
[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [1]

UNDERSTANDING GAME THEORETIC APPROACH TO SOFTWARE TESTING
Avinaash Anand K., Harshit Raj & Shaurya Joshi

ABSTRACT

Software development cycle (also known as SDLC) is the process of software development in small modules

which are later integrated to form a standalone software. Testing is on of the steps which are a part of the

process whereby a module of code is tested before being incorporated into the final program.

1. INTRODUCTION

Software development cycle (also known as SDLC) is the process of software development in small

modules which are later integrated to form a standalone software. It consists of various steps such as

software design, coding, implementation, etc. Testing is one of the steps which are a part of the process

whereby a module of code is tested before being incorporated into the final program. For ensuring a

healthy code, it is imperative that the code which is sent out to the customer is error free, thereby for every

code generated by a developer, there is a set of attackers of attackers, who entail a certain effort to

discover the flaws in the code. Depending on the tolerance level of an organization and prioritization

parameters, a code can be deemed to be either fit to use. Unlike other products, software per se has a low

manufacturing cost as the main expense is in formulation of that design and ensuring a smooth execution.

There can be multiple kinds of testing on a software like unit testing, integration testing or system testing

Boris Be (Beizer,2009).

Game theory has traditionally been used as a mathematical modelling technique based on the strategic

interactions of cooperation and competition. (Eduardo Mattos, 2014). There has been some literature

wherein the incentive mechanism for a worker is determined using an application of game theory. Through

ourgame, using a tester and developer model, weintend to test the application of game theory in a software

testing framework, in order to better understand the motivation behind either the developer to create an

efficient code or that of the tester to ensure that the test code run by him/her is free of errors. This game

has been modelled on this precise phenomenon wherein we try and estimate the utility of each of these

players to perform the task allotted to them to the best of their abilities. Therefore, game theory was used

as a platform to understand this mentality of the players and understand how they would react given

different situations.

2. THE TESTING GAME
The game between the tester and the developer can be compared to a security game, akin to the one

which is played between security staff (defenders) and system attackers in various situations. In this

case, the testers assume the role of defenders and developers play attackers. The testers try to protect the

software from bugs and inefficiencies in the code, while the attackers try to breach the system by

checking in inefficient chunks of code which might contain bugs. The company has limited security

resources (testers) and they try to deploy them as efficiently as possible to prevent the code from bugs.

The testers gain a positive pay off from defending the software against bugs, thus gaining from every

bug that they catch. The developers gain utility from saving their time in correcting the inefficiencies,
whilst devoting the time that they save in the process on working on another task: thereby expediting

their work. Both set of players have their respective penalties also. Testers are penalized for any piece of

code that contains bug and goes untested, as this deteriorates the software quality and can damage the

reputation of the software company, thereby leading to heavy losses.

In case the bug goes undetected, the client might be dissatisfied with the software quality and the bug

would have to be removed in future software update which would be costlier. This process explains the

penalty behind bug misses by testers. On the contrary, the developers are also penalized but in somewhat

different conditions. In case the testers catch the bug/inefficient code that the developer has checked in,

the developer must rectify the code which takes even more effort than it would’ve taken in the initial

iteration. Besides, the developer also faces a social cost for each bug that is caught, as it results in a loss of
quality perception in the eyes of his clientele and fellow employees. Thus, testers and defenders both face

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [2]

some constraints and are forced with making some choices pertaining to their concurrent states. Although,

both defenders and attackers have a singular goal: maximizing their individual payoffs. Both try to

rationalize their choices given the action of the adversary which results in a game being played between

the two.

3. MODELLING THE GAME

This game between the tester and the developer can be modelled in three steps. The first step consists of
determining the types of bugs that can creep in a software module, the associated utilities/rewards the

tester would get on catching a specific type of bug, the penalties that he would have to incur if he fails

to catch that bug, besides the set of utilities and penalties for the developer as described in the above

paragraph. The next step would involve devising the utility, penalty (or effort), and the pay off

equations for the tester and developer. The final step would be solving the two set of equations

individually for maximizing the profit for the tester and the developer and have a look at the conditions

in which they would deliver optimal performance.

A. Classification of bugs and definition of notations

Bugs are inefficiencies or errors in a piece of code which can cause the software to malfunction or stop.

Bugs are mostly encountered on corner cases (the extreme ends of data sets that the software program is
capable of processing), besides being found in many other peculiar forms. Some of these can be more

severe than the others. Based on severity, bugs have been classified into three parts for the purpose of

this study:

 High severity(HS):

 Medium severity(MS)

 Low severity(LS)

We assume that each type of bug is found in some amount in a software module, and tester tries to run

the designated test scripts in order to catch as many bugs as possible (or optimal). The developer tries to

check-in the bugs at the rate of n(X) where X denotes the severity quotient of the bug.

Total number of high severity (HS) bugs in the software module = n(HS) Total
number of medium severity (HS) bugs in the software module = n(MS) Total number

of low severity (HS) bugs in the software module = n(LS)

Further, we denote the number of bugs caught by tester with nt (X) where X represents the severity

quotient.

Number of high severity (HS) bugs caught = nt(HS)

Number of medium severity (MS) bugs caught = nt(MS) Number

of low severity (LS) bugs caught = nt(LS)

Also, the tester is bound to miss some of the bugs in the module, which are denoted by nm

(X).

Number of high severity (HS) bugs missed = nm(HS) Number of

medium severity (MS) bugs missed = nm(MS) Number of low

severity (LS) bugs missed = nm(MS)

We define a variable q (0 < q < 1) which denotes the proportion of bugs caught by the testers out of the

total bugs present in the module. Therefore,

nt(HS) + nm(HS) = n(HS) (where nt(HS) = q* n(HS)) nt(MS) +

nm(MS) = n(MS) (where nt(MS) = q* n(MS)) nt(LS) + nm(LS) =

n(LS) (where nt(LS) = q* n(LS))

After defining the variables for number and types of bugs, we move to define the coefficients for
utilities and penalties in case of a tester for catching different types of bugs. The utility coefficients are

denoted by αX and the penalties by PX where X represents the severity coefficient. The utility

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [3]

coefficients vary on a scale of 0 to 10 (with 10 being the highest utility coefficient and 0 the lowest),

while the penalty coefficients range from 0 to 10 (with 0 being the lowest penalty and 10 being the

highest).

a) Tester utility coefficients:

Utility co-efficient for catching a high severity (HS) bug = αHS Utility co-

efficient for catching a medium severity (MS) bug = αMS Utility co-

efficient for catching a low severity (LS) bug = αLS

b) Tester penalty coefficients:
Penalty for missing a high severity (HS) bug = PHS Penalty for missing a medium severity (MS) bug = PMS

Penalty for missing a low severity (LS) bug = PLS

A similar exercise is undertaken for the developers with utility coefficients denoted by βx and penalty

coefficients denoted by P’X where X again denotes the severity quotient. These coefficients are also on a

scale of 0 to 10 in the case of utility coefficients and 0 to 10 in case of penalty coefficients.

c) Developer utility coefficients:

Utility co-efficient for not rectifying a high severity (HS) bug = βHSUtility co-

efficient for not rectifying a medium severity (MS) bug = βMS Utility co-efficient

for not rectifying a low severity (LS) bug = βLS

d) Developer penalty coefficients:

Penalty for high severity (HS) bug correction in second iteration = P’HS Penalty for

medium severity (MS) bug correction in second iteration = P’MS Penalty for low

severity (LS) bug corrections in second iteration = P’LS

Now, as mentioned previously, the testers are not perfect, and they make some errors which lead to bugs

creeping in the software even after a suitable test script being run. The probabilities with which such

errors can creep in are denoted by ΥXas depicted below:

Probability that tester will catch a high severity (HS) bug = ΥHS

Probability that tester will catch a medium severity (MS) bug = ΥMS

Probability that tester will catch a low severity (LS) bug = ΥLS

In this case, the number of rectifications that a developer would have to make is a function of two

factors: the number of bugs tested of a specific category, nt(X) and the probability of the tester catching

a bug of that category, ΥX. These are denoted by nr(X).

Number of high severity (HS) bugs resent to developer for rectification = nr(HS) Number of

medium severity (MS) bugs resent to developer for rectification = nr(MS) Number of low

severity (LS) bugs resent to developer for rectification = nr(LS)

Also, the developer would incur a social cost, s with every bug that he has to retest. This social cost

captures the loss in the quality perception of his work.

Social cost incurred by developer per bug (of any severity) = s

Now that all the notations and definitions are done with, we move on to formulating the utility function,

penalty function and thus, the resultant payoff equations for the developer and the tester.

B. Formulation of payoff functions

First, we’ll look at the construction of payoff function of a tester, post which we’ll navigate to the developers.

a) Payoff for testers:

The utility of tester is the sum of utilities gained by catching all types of bugs as shown below:

Utility of tester (UT) = αHS*nt(HS) + αMS* nt(MS) + αLS* nt(LS)

Also, penalty that he would incur in case of missed bugs would be given by:

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [4]

Penalty for missing (PT) = PHS*nm
2(HS) + PMS*nm

2(MS) + PLS*nm
2(LS)

In this case, the penalty is directly proportional to the square of number of bugs found reflects the fact that a

client is likely to get increasingly frustrated with a software as the number of bugs increase, as he might tolerate

some mistakes but a lot of them would reflect very poorly on the company. Thus, this helps in modelling the

incremental (above normal) penalty with each increasing bug.

Now, the payoff of a tester would be given by the difference between his total utility and total penalty.

Payoff (Tester) = UT– PT

= [αHS* nt(HS) + αMS* nt(MS) + αLS* nt(LS)] – [PHS*nm
2(HS) + PMS*nm

2(MS) + PLS*nm
2(LS)]

= [αHS* nt(HS) - PHS*{n(HS) – nt(HS)}]2 + [αMS* nt(MS) – PMS*{n(MS) – nt(MS)}]2 + [αLS* nt(LS) –

PLS*{n(LS) – nt(HS)}2]

= [αHS* nt(HS) - PHS*{n2(HS) + nt
2(HS) - 2* n(HS)* nt(HS)}] + [αMS* nt(MS) – PMS*{n2(MS) + nt

2(MS) - 2*

n(MS)* nt(MS)}]+ [αLS* nt(LS) – PLS*{n2(LS) + nt
2(LS) - 2* n(LS)* nt(LS)}]

= {nt(HS)[αHS – 2* n(HS)] - PHS[n(HS)2 - nt(HS)2]} +{nt(MS)[αMS – 2* n(MS)] – PMS[n(MS)2 - nt(MS)2]} +

{nt(LS)[αLS – 2* n(LS)] – PLS[n(LS)2 - nt(LS)2]}

b) Payoff for developers:
A developer’s utility is equal to the sum of time he saves from skipping the bugs that he passes on with the code

to the tester, as shown below:

Utility of developer (UD) = tHS + tMS + tLS,

where tX =time saved by skipping a bug belonging to a specific bug category X.

Now, the time utility for these bugs can be quantified using the utility coefficient per bug and number of bugs

belonging to each category.

Time saved by skipping high severity (HS) bugs = tHS = βHS * n(HS)

Time saved by skipping medium severity (MS) bugs = tMS = βMS * n(MS)

Time saved by skipping low severity (LS) bugs = tLS = βLS * n(LS)

Therefore,

Utility of developer (UD) = βHS * n(HS) + βMS * n(MS) + βLS * n(LS)

Similarly, the penalties that the developer will incur can also be modelled as shown below:

Penalty of developer (PD) = (s + P’HS) * nr (HS)2 + (s + P’MS) * nr (MS)2 + (s + P’LS) * nr (LS)2

Here, the penalties include a uniform social cost for any kind of bug that is caught by the tester, and the penalty

function is again directly proportional to the square of bug count reflecting the extra effort that would be

required in rectifying additional bugs as the count increases (analogous to the case of testers).

As already mentioned, the bug counts can be rewritten as:
nr(HS) = ΥHS * nt(HS)

nr(MS) = ΥMS * nt(MS)

nr(LS) = ΥLS * nt(LS)

Figuring these values in the above equation, the penalty can also be written as:

PD =(s + P’HS) *(ΥHS * nt(HS))2 + (s + P’MS) * (ΥMS * nt(MS))2 + (s + P’LS) * (ΥLS * nt(LS))2

Payoff (developer) = U(d) – P(d)

= {βHS * n(HS) – [(s + P’HS) * ΥHS
2 * nt(HS)2]} + {βMS * n(MS) – [(s + P’MS) * ΥMS

2 * nt(MS)2]} + {βLS * n(LS) –

[(s + P’LS) * ΥLS
2 * nt(LS)2]}

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [5]

Now that the payoff equations are done with, the individual optimal states for developers and testers can be

calculated.

C. Calculating the optimal solution

The testers would like to increase their individual payoffs, and in turn minimize the inefficiencies present in the

code. This would also be the optimal solution for a software firm focussed on quality of its software.

Tester Strategy

To maximize the tester payoff Pt, we put break the equation into 3 parts and then differentiate in terms of the severity

of errors.

 = 0;

 = 0;&

 = 0;

For High Severity bugs:

 = 0;

As nt(HS)= q * n(HS),

Thus, n(HS) =

 = 0

 2nt (HS) * PHS = αHS –

 αHS = [2 * PHS * nt(HS)] +

 αHS = nt (HS)

Thus, nt (HS) =

For Medium Severity bugs:

= 0;

As nt(MS)= q * n(MS),

Thus, n(MS) =

 = 0

 2nt (MS) * PMS = αMS –

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [6]

 αMS = [2 * PMS * nt(MS)] +

 αMS = nt (MS)

Thus, nt (MS) =

For Low Severity bugs:

 = 0;

As nt(LS)= q * n(LS),

Thus, n(LS) =

 = 0

 2nt (LS) * PLS = αLS –

 αLS = [2 * PLS * nt(LS)] +

 αLS = nt (LS)

Thus, nt (LS) =

Thus, for a tester, the optimal number of anybug of type X to be caught is given by-

Developer Strategy

Similarly, we can go ahead and calculate the point where the developers can maximize their payoffs.

To maximize the payoff Pd, we put break the equation into 3 parts and then differentiate in terms of the severity of

errors.

 = 0;

 = 0;

 = 0;

For High Severity bugs:

 = 0

Optimal number of bugs caught =
q2∗ 𝛂X

2∗PX 1+𝑞2 +4𝑞

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [7]

On using nt(HS) = q * n(HS)

 = 0

 - 2* = 0

 = 2*

Thus, n(HS) =

For Medium Severity bugs:

 = 0

On using nt(MS) = q * n(MS)

 = 0

 - 2* = 0

 = 2*

Thus, n(MS) =

For Low Severity bugs:

 = 0

On using nt(LS) = q * n(LS)

 = 0

 - 2* = 0

 = 2*

Thus, n(LS) =

Thus, for a tester, the optimal number of any bug of type X to be caught is given by-

4. THE REAL-LIFE DILEMMA

In real-life, software firms can incur heavy loss in terms of monetary value and market perception if the

software provided by them to the client contains many bugs. Therefore, testing exists: to identify and

rectify the issues beforehand, and to provide client with a near- perfect software. The game which was

depicted in Section 3 was not plugged in with numbers. Instead, we talked about payoffs in terms of
different variables. In real-life, utility/penalty coefficients such as αx, βx, Px, Px’, and s, have values

which deter the programmers and testers from checking in inefficient codes and missing bugs

Optimal number of bugs corrected =
𝛃X

𝟐∗ s + P’X ∗𝚼X
2 ∗ q2

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [8]

respectively. The company consists of both: testers and developers, and thus it would be optimal for a

company to maximize the combined benefit that it can extract from both, instead of maximizing the

payoff of a single entity. But this comes only after minimizing the bug count as it has even worse

consequences for the firm as discussed above. Let us design a game similar to the one played in section

2 and 3, albeit with only a single bug left in the code at hand with the developer. This one-shot game can

help us in gauging the state of maximum benefit for the company, besides having a look at the Nash

equilibria that might occur. We keep rest of the assumptions same, and the penalty versus bug count

curve remains a parabola (depicting exponential marginal loss with increasing bug count). In this

example, we takeαx

= βx = Px = Px’ =10; and s=5

(Figure 1) A one-shot tester-developer game

(Table 1) Normal form representation of extensive form game in Figure 1

Tester (/Developer () S R

C (-15,10) (0,0)

M (10, -10) (0,0)

As evident from the normal form, the Nash equilibria of this game is in the state (R, C) (as shown in Table 1). It

is also the state in which the maximum combined payoff occurs for a firm. Let us see what happens if we extend

this game to one more bug (one more period).

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [9]

(Figure 2) A two-shot tester-developer game

(Table 2) Normal form representation of extensive form game in Figure 2

 SS RS SR RR

CC (-75,20) (-15,10) (-15,10) (0,0)

CM (-5,0) (-15,10) (10,10) (0,0)

MC (-5,0) (10, -10) (-15,10) (0,0)

MM (20, -50) (10, -10) (10, -10) (0,0)

Notations:

D: Developer, T:Tester

S: Bug skipped by developer

R: Bug rectified by developer

C: Bug caught bytester

M: Bug missed by tester

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [10]

Similar to the previous game, this two-shot game also has its N ash equilibriain the state (RR, CC) which

happens to be the group payoff maximizing state (refer Table 2). On extending this game further, the Nash

equilibria is (Rn, Cn) where the subscript ‘n’ denotes the number of iterations of the attached alphabet. This

shows that the best strategy for a company is to try and minimize the bugs left by developer while operating the

testers at full vigil to maximize its profit. How certain situations can result in changes to this or reinforce this is

discussed in further sections

5. SECTION 5: INSIGHTS
INSIGHT 1: For a firm which is more focused on the quality of software it delivers to its clients; the

optimal strategy is to reduce the time burden on the developers.

REASON: From the equation depicting optimal number of bugs corrected by developer in the first

iteration itself, we get-

Optimal number of bugs passed on by the developer ∝ βx

As we relax the time constraint, the developer would gain lesser benefits from time savings as βx

reduces and thus, he would check in lesser errors into the module, thereby increasing software quality.

INSIGHT 2: A firm which has better quality of testers faces lesser inefficiencies in code not only

because the testers are good, but also since developers are more apprehensive of passing on bugs due to

their beliefs about the testers.

REASON: From the equation depicting optimal number of bugs corrected by developer in the first

iteration itself, we get-

As Yx increases, the code in efficiencies checked in by developers decreases.

INSIGHT 3: The number of inefficiencies checked in by developers decreases as the testing schedule

gets more stringent.
REASON: From the equation depicting optimal number of bugs corrected by developer in the first

iteration itself, we get-

As the number of test cases that are executed increases, the inefficiencies checked in by developers falls

6. RANDOMIZATION LEVELS AND PAYOFFS

Software companies often deploy standard test suites which consist of several test scripts which test the

code against the most crucial and vulnerable errors which can be present. In such a case, the developer has

full knowledge of the testing conditions which can be evaluated. As discussed in the previous section, a

stringent testing schedule means lesser errors in the software. But there lies the problem: the more

stringent a testing schedule gets; the more cost is incurred by the firm. The testing resources are limited,

and there are a lot of modules to be tested. This means that a judicious distribution of resources is of

paramount importance. A schedule can be randomized to mitigate this problem. This means that instead of

using a fixed script, a tester can randomize the test cases to mitigate the pre-existing beliefs of developers

about the test scripts, thus catching more bugs.

Now the question arises that what should be the optimal randomization level? A randomization level of 0

means a fully known script to the developer, which is not something desirable. A randomization level of 1

[Avinaash, 5(12) December, 2018] ISSN: 2394-7659
 IMPACT FACTOR- 3.775

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com

 [11]

means that the test schedule is completely randomized, which in turn means that the developer can’t

breach the system ashe has no prior belief about the test cases. But it also means that the test cases will

miss out on some very important cases due to complete randomization, and this can wreak havoc on the

program. Thus, an optimal balance needs to be maintained during the selection of randomization schedule

in order to sufficiently mitigate the beliefs of developers while also taking into account the important cases

which must be tested.

References
1. Beizer, B. (2009). Software Testing Techniques (2 ed.). Delhi, Delhi, India: dreamtech.

2. Eduardo Mattos, M. V. (2014). Applying Game Theory to the Incremental Funding Method in Software

Products. Journal of Software, 9, 1435-1443.

